OPTIMIZATION THEORY FOR ORDINARY DIFFERENTIAL EQUATIONS

by

R. Timman™

1. Introduction.

In this paper an exposition will be given which is similar in structure
to the classical calculus of variations for the determination of necessary
conditions for the existence of a field of extremals for control problems,
where the control variables or the state variables are subject to a set of
inequality conditions,

If necessary conditions are derived for the existence of a field of ex-
tremals starting from a fixed point x,! for a value t, of the parameter t,
it is relatively simple to derive Pontryagin's principle [Ref.1].

Starting with a simple formulation of the necessary conditions for the
minimum of a function of n variables x!, which is the basic problem of
non-linear programming, at one side and a rederivation of the classical
Weilerstrass condition at the other side, Pontryagin's principle for this
never restricted case (existence of a field) is found. Here still variations
are admitted which show discontinuities in the control variables for arbitrary
values of the parameter t. It appears, however, that only discontinuities
in the extremals will occur at a change of constraint conditions.

Hence it does not seem necessary to admit such discontinuities for
arbitrary values of t, and the derivation of the corresponding conditions
can be given for intervals, where a certain set of equality conditions are
satisfied throughout this interval,

Then- the derivation goes completely along the classical lines [cornpare
e.g. Ref, 2].

For constraints on the state variables a similar reasoning immediately
leads to results, which are a generalization of Pontryagin's result for one
restriction [Ref 1, chapter IV].

Finally it is shown that for time-optimal systems which are linear in
the state and control variables, the solution requires the solution of a
linear programming problem at each instant t, Here it is obvious that
always discontinuities in the control variables occur, which correspond to
a switch from one constraint to another,

It should be remarked that most of the results given here can be found
in the recent work of Hestenes [Ref, 3].

2. The minimum of a function of several variables with inequality constraints.

As an introduction to the method which will be followed in the succeeding
sections, we consider the minimization of a function F(x!) of n real variables
xt (i=1,...,n).

The function F(x ) is supposed to be of class C?, i.e. the partial deri-
vatives F,i,j exist everywhere and are continuous.

The problem is formulated as the requlrement to determine a point %,
where F(x') has a minimum value in the region R, determined by a set
of inequality constraints

f*xhH =0, k=1,...,m.

where the fK(x!) are also of class CZ2.
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In order to derive a set of necessary conditions, we assume that %! is
a minimum point, satisfying the conditions

tkxl =0, k=1,...,1 =n,

Ry < 0, k=1+1,...,m.
Then for any variation éx! satisfying

b rexy €0, k=1,...,m,
we must have

F(x! + 6x) 2 F(xh).

In order to transform these conditions we further assume that F(x) is
locally convex in a neighbourhood of X!, a property which is defined by the
condition that for all variations in this neighbourhood

F(&b + 6xly - F(&Y) - Fyoxlz o,

Geometrically this means that the surface F(xi) in a nt+l-dimensional
space is everywhere above its tangent plane.

Then the requirement can be replaced by

~i o i i
F({x + 6x) F(x)2 ngéx > 0,
for suppose that for a certain set of variables 6xJ
i
FRJ 06X é O,

we can, regarding the existence of continuous derivatives of second order,
expand F(X' + 6x!) into a Taylor series:

N . A , ~ N
F(x' + 6x') - F(X') = Fyéx’ + 3E 1 6x 6x),
where ﬁxixi denote the derivatives in a point of the neighbourhood.
Introducing a factor A > 0, we then have

F(&!+ aoxh) - F(RY) = Foyaexd + I0F  ;ox'ex]

(where ’f‘xjxj may be different from the previous value ﬁxixi )-

By taking A small enough, it is possible to arrange that the first term
of the right-hand side exceeds the second one in absolute value, In this case
F&D+ aoxl) - Fr) < o

in contradiction to the assumption.
In a similar way it can be shown that the conditions

gt + sxy< 0, k=1,...,L
corresponding to the equality constraints
ezl =0, k=1,...,L

imply that
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sx'< 0, k=1,...,L

On the other hand inequality constraints
&) <0, k=1+,...,m,

do notimply an essential restriction on the éx!, for, if max(éx') is sufficiently
small, we always have

&t + exl) <0, k=1+1,...,m,
because of the continuity of the f¥(xI).
From these considerations follows the necessary condition for a local
minimum that
Fiéxig O, i=1'-o-ana
for all variations éx' which satisfy

thex! <0, k=1,...,;i=1,...,n,

Here the derivatives Fii and f;i are abbreviated as F; and fi( For a

further treatment we introduce 1 slack variations ézX = 0, so that
froxt + 62X = 0, k=1,...,5;i=1,...,n
The constraints are stipposed to be independeni., This means that in the
region considered the rank of the matrix f¥ is 1. ~
Then by rearranging the variables, we can always obtain that
det(f¥y # 0, k=1,...,1;i=1,...,1L

Rewriting the constraint conditions as

fhoxl = - £k, 6x™ - s2%, i, k=1,...,; h=1,...,n-l,

the first 1 6x' can be expressed into the remaining 6x' and 6z". For this
expression is needed the reciprocal matrix y; of the fj, defined by

iek _ gi
7 iy = 65

1, for i=j,
=0, for if#j.
This gives

oxt = - 'yli(fi:h sxth - 'yiézk,

where now the 6x® are no longer subject to any restriction and the 5z
are 20. These values are substituted in the requirement

F, éx' + Fpy 6x™ 2 0, i=1,...,1; h=1,..,.,n-.
yielding

(Frn - Fyvifiy)ox™ - Fiviez" 2 0

for arbitrary 6x"™ and &z" = 0.
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Introducing the vector

p, = VP, ik = 1,...,1,
we have

k 1+h
(F1+h - p1(f1+h ) 6x +»

- Py 6zkg 0.
Since the §x'" are arbitrary, this leads to

Fun -Piftn = 0, k=1,...,; h=1,...,n-,
and since the &zK 2 0, the p, must sa'tisfy the restriction

p, = 0.

(This is essentially the Farkas lemma).
From the definition of the p, we see that also

F, - piff = Fi- viFjff = F; - 6F; = F; -F; =0, i=1,...,L

This result Justlfles the Lagrange mu1t1p11er method:
If F(x') has a mlmmum for x' = X', with equality for 1 of the constraints

iy =0, k=1,...,1,
there exist 1 multipliers p, £ 0 (k=1,...,1), so that

Fi -pff =0, i=1,...,n

If the constraints are also locally convex, we now can easily derive the
Kuhn-Tucker theorem by a consideration of the function

R(x\, qp) = F(x}) - qf%xh, i=1,...,n; k=1,...,m,
Here the variables x' satisfy the constraints

fkxly 20, k=1,...,m;1=1,...,n,
while

qx £ 0, k=1,..,,m,

If #' is the minimum point and qx = px for k = 1,,..,1, and q, = 0 for
k = 1+1,...,m, this theorem states that

R(x', py) 2 R(XL,py) 2 R(E, qy).

In fact, in the region, where F and f¥ are all convex:
R(x, p) - R(E, py) = Fx)) - F(&Y - p, {Mx) - £4&)}
2F(x - &%) - p R’ - &%) = (7)) - pif]) (' - &) =0,

On the other hand
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R(Z,p,) - R(¥,q,) = F(x') - p (&) - F(R) + q,f¥ &Y + q, fH (&) =

i
a7 &)z 0, ;<

1,...,1;
1,...,m-l.

The function R(xi,qk) has a saddle point in &, Py, i.e, it has a minimum
with respect to the x' and a maximum with respect to the g,.

3. The problem of the classical calculus of vaviations,

As a preparation for the investigation of the minimization of integrals
relating to control systems, some basgic theorems of the classical calculus
of variations will be rederived following a method which is also applicable
to control problems, . ‘

Instead of a function F(x') we now consider an integral

T1
J = j Fi(t), $(t), tydt, i=1,...,n,
TO

where the function F is of class C? in the variables x', X!, t and the x(t)
are functions of a parameter t, The end points of the integral are fixed

| i
for t = T : x' = Xg,
for t = Ty: x! = X1,

The requirement is to find a set of functions %X'(t), for which the value
of the integral J is a minimum compared to other curves x'(t) running
through the same points,

In order to facilitate the later discussion, the integral is written into
the form

I1
J = | F(it), u(t), t)dt,
J

where the x! and u' are related by
! = ut(y), i=1,.,.,n

If the values of x' for t = T, are fixed, the values of x' are completely
determined, if the values of u'(t) are given. We follow the method of sec-
tion 2 regarding the equations as constraints. If a necessary condition is
to be derived for the minimization problem, it is again supposed that

Iy
J =j F(xi(t), 4Y(1), t)dt,
T

xt = dly,

has a minimum value compared to other curves xi(t), ui(t).
Then for any other curve

a'(t) + su'(t),
gigt) + sx'(t),

u' (t)
(1)

we must have
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T Ty
j F(x' + ox', 4 + sul, t)dt ;f F&, d, t)dt.

T, T,

Since the starting points are fixed, we have

t

5x'(t) = J sut(T)dT

To

For a fixed end point the class of 6ui(t) is restricted by the condition
T,
5% (Ty) = J sul(r)dr = 0
To

Instead of restricting the variations su’ to this class, we consider pri-
marily general variations éu', which vanish for t = T, but otherwise are
only restricted by the condition that the corresponding éx' are small of
order €,

A variation su' is called an e-variation, if it is integrable (in the Le-
besgue sense) and if, for any bounded.function 8(t), i.e, [6(t)] < M for
Ty, £t £T; the integral

I
max J 8(t)sul(t)dt |< e M.
1 To

A special class of these variations occurs, when 6u1(t) is uniformly small,
i.e.
max 6ui(t)
i

<
= Tl-TO,

but also locally, finite values of su' over a short interval can be admitted,
e, g.

sul =0, T,<t<T-1e

sut = U, T—%€§t§T+%e

sul =0, T+ie<tsT,
WheremaxU=1.

For these general variations the end point is not necessarily fixed, in
particular for the variation quoted above 6x*(T;) = €Ul

For this type of variations necessary conditions will be derived for a
case which occurs mostly in appllcatlons, viz, the existence of a field of
extremals starting from the point X§ at t = Tg.

The field of extremals exists, 1f for every point X! of a certain open
region G in R" and every T of an open interval a curve exists which joins
Xy, T, with X T, so that along this curve the integral

T
IxLT) = j F(x'(1), u'(t), H)dt; u' = %'

To

is a minimum compared to any other differentiable curve, for which x' (To) =
X1 and x'(T) = X'. Moreover the minimum value J(X1 T) of the integral
cons1dered as a function of X' and T is supposed to have partial derivatives
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of the first order with respect to the variables X! and T.

Consider now an extremal of the field which reaches the point X1 at
t=T;. We first derive the classical Euler-Lagrange equations for varia-
tions along this curve, which are uniformly small,

; €
If max |é6u(t)| < =——,
ax |oul(t)| < 7o,

we have

T
|6xi| = J éui('r)dT < e,
TO

The difference of the integral along Sii(t), ﬁi(t) and the varied curve

j {F(S&i + sxt, 4l + sut, 1) - F(xl, ul, t)}dt
Q
can now be expanded into a Taylor series. This gives
I T, t
J (in sxl + Fﬁi éui)dt + 0(62) = f Fii J‘ éui('r)d'r + F g sulbdt + 0(62),
o : T, T,

The integral is now transformed by partial integration, We introduce a
vector p;, which satisfies

T

I.)i = nga

and find for uniformly small e-variations su’ that the difference is

Tq t
f p; j sut(mydr + Fﬁiéui dt + o(e?) =
TO . TO
t Tq T1
= |p; J sul(r)dr + J {- p; + Fﬁi}éu‘(t)dt + 0(e?) =
T, T, To

T
p6x (Ty) + j {- p, + Fﬁi}éui(t)dt + 0(e?).
T

Since we assumed that every point in a neighbourhood of X' in the field
could be reached by an extremal, we can make e sufficiently small that
X4 + &x' can be reached,

We regard further that p;(T;) was arbitrary., If we choose as boundary
values for p; the values inl , the term p,éx' exactly equals the difference

between the minimum values of the integrals from X_ to Xi and to Xi +
+ 6x'(T;) (apart from terms of second order),
This means that in this case

T
f {, p, + Fﬁi}éui(t)dt + 0(e?) 2 0
To

Since for sufficiently small € the first term is dominant and éu' is ar-
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bitrary, this leads to

Regarding the definition of p, we see that

. _d _ )
pi - d'_t'.Fﬁi = Fgla

which expresses the Euler-Lagrange equations,

4, The Weierstrass condition,

For general €- varlatlons the preceding consideration is not valid. If the
integrand is developed into a Taylor series with respect to dul, the re-
mainder terms are no longer of order €2 uniformly in the interval, how-
ever, this still applies to the. expansion with respect to é6x*,

We again consider necessary conditions for the existence of a class of
extremals which join the pomt X1 at t = T, to every point of a certain
nelghbourhood of the point Xi at values in an interwval round T,

Suppose (1), U'(t) is the extremal which reaches X1 at t = T;. The
expression for a neighbouring extremal in rewritten

J {F (1), ul(v), 1) - By, d'(b), t,}dt

J {F , ub, 1) - F(xb, af, t) +F(xt, 4, 1) - Pz, 4, t)}dt

and use is made of the expansion
P, 1) -FEL AL 1) = FE + e, dh ) - F(RL AL 1) = Fyy (8,85 tyox’ + 0(e?).

This leads to
Tl s - . : s . .
J'{F(xl, w, t) - F(x, @, 1) + Fy (x', 4, t)éxl}dt + 0(e?).

The first term is also of order e. In fact, according to the mean value
theorem

F(x, o, 1) - F(<, &, t) = F; (u' -4") = F su’,
where the derivative :Eui is bounded,
Using the fact that éu' is an ¢ -variation the integral

Ty

f [ped, of, 1) - F(, @ t)}dt

TO
is of order €, together with the second part of the integral,
As before the integral is transformed by partial integration, Defining the
Py by
pi = in
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the result is:
Ty
p,(Ty)6x'(T,) + f [P,y - Bl @, 1) - piéui}dw 0e®).
T

[¢]

The end values p;(T;) are now fixed as the values_of the partial derivatives
of the minimum values of the integrals J(X}] + AX', T; + AT) as functions
of X7 and Ty:

p; =J

Xl
Then the integral passes into

T3
T+ axi,Ty) - J(XL,T,) + f {Fec,uly) - Pl a4y - piﬁui}dt + 0(e”).
TO

With these values of p;>» which are now fixed by the end conditions the
integral

Ty .

f {F(xi,ui,t) - F(x',al,t) - p(u' - ai)}dt + 0(e?)
T

(6]

represents the difference between the integrals of the varied curve and the
extremal to the point X} + 6x'.
The condition then transforms into

T1
f {Fe,ul, ) - B, 641 - pat - @)bat + o(e?) 2 0,
TO

If this is to be true, a necessary condition is that for every e-variation
u' the first order part

iv
o

1 :
f {F(xi,ui,t) - F(x, 44 t) - p (u —ﬁi)}dt
T0
Now take for u! the variation for arbitrary T in the interval

sul =0, T, t<T-1%e
su' = U, T,-te<t<T+1ie,
sul = o, T+3e<t<T. '

This shows that
T+ie R
j {F.88 + UL 1) - P, & 1) - pU'pdt 2 0
T-4e
for arbitrary small values of e,

This is only possible, if for every T (except possibly in a set of measure
Zero)

F(x', at+ Ul t) - F(x', @, 1) - p,U' 2 0.
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If we use the Euler-Lagrange equations, thus p, = F,, we obtain the
Weierstrass condition, u

If the variations éu' are subject to restrictions, the Euler-Lagrange
equations are not necessarily satisfied, but the foregoing reasoning holds
for all admissible éu'.

5. The variational equations of contvol theory,

In control theory the fundamental problem is the minimization of an

integral
I1
F(x',uf,t)at, i=1,...,m k=1,...,m,

T, .
where the state variables x' depend on the control variables uX through a
set of differential equations

= eifxd(), ut),th

The functions F, f! are supposed to be of class C? in the variables x!, uk,
If the initial point x'(T,) = X, is fixed, the trajectories are uniquely deter-
mined by a choice of the control variables u*(t).

In general these variables are subject to certain inequalitr?f constraints,
The problem is to determine a set of control variables G%(t), so that a
point X is reached at a value t = T and the integral along the trajectories
%'(t), determined by these control variables, has a minimum value com-
pared to all other trajectories which join X;, T, with Xj, T;.

We shall derive necessary conditions corresponding to a more general
situation, '

Here it will be assumed that there exists a class of extremals which
join the point X, T, with every point of a neighbourhood

Xt =Xl +AX!Y, T=T, + AT  of the point X}, T,.

Before deriving these necessary conditions for the minimization, we study
the relation between e -variations 6uk and the corresponding variation éxk,
We recall that 6u® is an e-variation, if for every bounded function 8(t)
with |8(t)] = M
T1
max J' a(t) u¥(t)dt | = eM.

k
To

The varied curve x' + 6x! is a solution of
o+ oext o= fi{xj + 6Xj, uk + 6uk, t}
and the variation 6x' satisfies
skt = £10x) + oxd, uf + suk, t) - 11, uk, th

We first show that, if su* is an e-variation neglecting terms of second
order, 6éx' is uniformly small and is a solution of a non-homogeneous
linear equation.

Hereto we expand the right-hand side in a Taylor expansion with respect
to &x'
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8x! = fi{x] + (‘ixj,uk + 6uk,t} - fi{x],uk + 6uk, t} + fi{xj,uk + ouk, t} -
—fi{xj,uk, t} = fijéxj + £, uk + suk, ) - £, uk, 1)+ 3E L exdex!

where the last term denotes the second derivatives in an intermediate point,
The equation will be transformed into an integral equation of Volterra
type for éx' by an investigation of the non-homogeneous linear eguation

E' = e + g,
where f} = £l
x]
The equation is solved by means of the solution of the adjoint equation
o= i
¢Ij - T f]fﬂl ’

remarking that for every solution £' of the first equation and every solution
¢; of the adjoint equation

L ogley) = Elyy vl = 1180 ¢ gy - By = gy,

hence for the solution E,i of the non-homogeneous equation which is zero
for t = T, and any solution ¥; of the adjoint equation

t
X (b (1) = Wi ()g'(r)ar.
J

In order to solve E! we remark that for any solution n' of the homogeneous
equation

and ¢; we have

d i _
at (n"¥;) = 0.

Now take a set n; which for t =T, passes into the unit vectors

[e]
i _ i
n;(T,) = 6

and for (//If also a set, for which

then

i Koty - sisk o ok

nj(t)!ﬂi(t) - 6j61 - 6]';

and we see that the matrix !ﬂf(t) is the reciprocal of the matrix n}(t).
Since

t

e (i) = [ vime (nar,
./

we have
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- t °
siwvlont = nie [ vlme'rar

Ty

or

t
gty = nl(t) f vX(r)girydr
TO

In this way we transform the equation for 5x' into

t

t)f u* + suk) - fi(uk)]d'r+%nlj((t)f VY exler)ex!(ryar.
To

k

Now (//1 (t) and T)k( ) are bounded and f! (u + suk ) - fi(l}k) = fikéu from the

mean value theorem. Application of successive approximations gives for
8x'(t) a series. The first term is of order e, since su¥ is an e-variation.
Then the successive additions which result from the last term in the
integral equations are of order €2,
Hence we can write

5 ( f v tuk + suk) - fi(uk)] dr + 0(€?)
and to the first order of approximation 6x' satisfies the non-homogeneous

linear equations

sxM(t) = flaxd(t) + X + su) - fi@w).

6. The maximum principle.

The necessary condition for the existence of an extremal which is im-
bedded in the above-mentioned field of extremals can now be derived, If
xl(t), ﬁl(t)_ is the extremal from X, T0 to Xj, T1 we consider an €-va-
riation éu' which gives another curve x'(t):

xi(t) = K(1) + ox'(t), T, £t Ty,

with

ul(t) = a'(t) + sui(t), T, =t

A

Ty .

where u'(t) is supposed to be completely inside the admissible domain of
the control variables. .

~ The value of the integral along X' ( ), ﬁk(t) is J(Xll,Tl) and the difference
between the value of the integral along the curve x'(t) and J(Xj,T;) is

f R, i - FE O, 850, 0)a

Since 6x is of order €, we again expand into a Taylor series with respect
to the 6x!
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f {F X, ut, 1) - B, 861+ BED o, 6,y - FRLEN o fat -

J’ {F <, uf,t) - F(xl, 6k, 1 + F, éxi} dt + 0(e?),

where éx is a .solution of the equation

i i i i, i Kk

S i j _ oelp i ok
8x -ijéx + fY(x",u,t) - f'(x),u

> ).

Introducing a vector p;(t) we remark that
d i . i . i ; i, ~k
37 (py8x') = pyox’ + p; 8%’ = py sx' + pyfd ox + pifi(uk) - p£l(ak.
If the vector p; is to satisfy the equation
foi = - fjlpJ + F

the integral transforms into
Fid,uk, t) - P, a5t + 2 (p,6xt) - p.fiu¥) + p,figak) Lat + o(e?
3t (P p; X p;f(u®) (€7)
or

1
p(T,)6x"(Ty) + f {F(Xi,uk,t) - F(x', 4%, ty - p FiuX) + pifi(ﬁk)} dt + 0(e?).

To

We supposed the value J(X T) to be a function of class clina neigh-
bourhood of Xl,Tl
If now p, is fixed by the conditions that at t =T,

p; = inl ’
the term
py(Ty) 8% (Ty) = 34 6x(Ty) = J(X] + 6x', Ty) - J(X{, Ty) + 0(e?),

and the integral
Ty ’
f {F(xl,uk., t) - F(x, 45, 1) - pifi(uk) + pifi(ﬁ.k)} dt + 0(e?)

is the difference of the value of the integral along the curve x!(t) and the
value along the extremal with the same end point (at t = T;). If this actually
is to be an extremal, we must have

f{F(x uk, 1) - Pk, 1) - pfiu )+pifi(ﬁk)}dt;o

for all €-variations 6u’,
Taking a special variation
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sut =0, T, <t<T - le,
sut = U, T-Legt<T+ i,
sul = 0, T+ie<t T,

we infer as in section 4 that
F(x', uk, t) - F(x!, 0K 1) - pfiuk) + p i) 2 0

in nearly every point of the interval for all admissible values of uk,
In this way a maximum principle is derived, which is similar to Pons
tryagin's pr1n01p1e . .
In order that %!,4" gives an extremal from X.,T, to Xi, T, which is
embedded in a f1e1d of - extremals starting from the same point, it is ne-
cessary that there exists a solution p; of the equations

for which for every value of t on the interval T ) £ t = T;:

k

H(x',u', 1) = - F(x, w0 + ptx, uf, ) g BEE, 05 1.

Since this principle is to hold for every value of € and 6xt = x! - %! is of
order €, we must also have for points on the extremal

H&Luk, 1) g HZL 6K, 1),
7. Specification of the maximum principle for inequality constraints on the
control variables.
In the precedmg section the minimum condition of the integral is reduced
to a maximum condition of the control variables u! on points x 1(t) of the
extremal.

This means that for a fixed value of t we have a simple optimization
problem for functions of a number of variables u

where, since x!, p; and t are fixed, we only have
H = - F(u¥) + p,fiu¥).
The constraints are expressed in' the form of a number (u) of inequalities
g fuki),t} =0, x = 1,...,4,
where the functions g% are of class CZ2.
g <0, K= 1,000,0.
We introduce slack variables z*
giut) + 2% =0, X = 1,...,p
Then the zk are subjeci to the conditions

z% > 0, K=1,...,M.
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We now suppose that in the maximum point z* = 0 for &« = 1,...,7 < m,
and z* > Oforx=v + 1,...,u and impose the condition that for a small
variation §uf = u¥ - d¥, which does not leave the admissible region

6H = 0.
The constraints give conditions on the su* which follow from

K

gae-out + 625 = 0, x=1,...,0

but for & = 1,...,v the §z% are limited

62X

v

0, £ =1,...,7,

for k = v+ 1,...,u for sufficiently small su® we always have
z% + 62 > 0.

Hence the &u* are only restricted by
gf{‘c‘iuk= - 52%, K =1,...,0,

where gf is an abbreviation for gﬁk.

If the g"(uk) are independent, the rank of the matrix gf is v and we
can rearrange the variables u¥, so that

det(gf) # 0, £ =1,...,v; k=1,...,v.
Introducing the inverse matrix vyL of gf, defined by

'y}(gﬁ=6}<=1, for 1 = k,
=0, for 14%Kk,

we can express 6uk(k =1,...,v) into su¥th (h=1,...,uv) and 6z%,
yrgrout = -yp62%, 1= 1,...,v,

or

1 v+h

1 _X 1
u’ = -y, g,y 6u -'yxézx, L=1,...,v.

Here the variations in 6u”" are arbitrary (if sufficiently small), but the

6z% are subject to the restriction 6z* 2 0.
Inserting into the expression for §H

i i j v+h i h .
6H = - Fuj sul +pfidu’ - F ym Su o i Losh su”™ ;s j=1,...,v,
we obtain

h i | K i +h I A 4
P oah F Vg Gy 1)U =(-F i+ L i)y, 627 £ 0.

; V]

§H = ~(F pan +7ig,, F,i)ou

The condition is simplified when introducing parameters A,
A = (-F + pf)vy

and takes the form

i h
(- Fon + Pifll_lwh + Axz‘:);xl:(+h)6uW - Axéz‘x z0
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for arbitrary éu”™ and 6z* z 0.

This gives the necessary conditions
-F 4o+h + plf v+h t+ k,(g yth = 0,
Ag £ 0,
while from the definition of A, it follows that also
“F o+ piflilj refa =0, j=1,...,m

Hence the maximum principle requires the existence of v multipliers A, £ 0,
which satisfy the m conditions

. & _
-Fuj +p1f:1] +AKguj = 0.

In this way we have expressed a set of necessary conditions in the form
of a set of equations for the functions x'(t), p;(t), uk(t), A (b):

o= i, Wk ),
1'31 = 'f;](ipj + in:
gf(uf, 1) = o,

. .
-F hpifi T gy = 0,
Ay S0,

Now it is possible to locate discontinuities in the extremals, As long as
A¢ < 0in a certain interval 7, £ t € 71 the varlables satisfy a set of al-
gebraic and differential equations and hence x! u »Ax-and p; are differentiable.
But as soon as A, passes through zero, the condltlons are no longer satis-
fied. Here the assumption that z¥ = 0 (« = 1,...,v) must be altered. This
means that the set of equality constraints changes. This gives rise to a
possible jump in the ul, which results in a discontinuity in the derivatives
of x'(t).

In Sche interval 7, £ t £ 71 it is not necessary to cons1der variations su¥ s
which show this jump, only uniformly small éuk suffice to derive the
necessary conditions, shown here,

8. Divect devivation of the diffevential equations with geneval inequality
rvestrictions on the control variables.

Once it is shown to be possible to locate discontinuities in ﬁk, it is also
possible to give a direct derivation of the set of differential equations,
which are necessary conditions for the functions ¥ (t) to give a minimum
value to the integral. With this aim in view we specify the constraints in
an even more general form containing both state and control variables

), ukb(), ) £ 0, X = 1,...,u

where we suppose that the functions g* considered as functions of ukX are
independent, i.e. for every combination of v equations the matrix

(g:k) x=1,...,vsm

has the rank v,



Optimization Theory For Ordinary Differential Equations 175

We suppose that in a subinterval To £t 7 of T) £t =T, the uk,x1

satisfy the conditions

gx(xi,uk,t) = 0, for x=1,...,7 £m

gi(xh,uf, 1) <0, for x=v+1,...,u
Then again introducing the slack variables z"(t) by
gx + z%5 =0
we have

z¥ = 0 for K =1,.,.,v,

z¥ > 0 for

x

=v+l,,..,u
In the interval 7, £ t < 71 we introduce uniformly small e-variations suk,
Then the 6x" satisfy the differential equations (neglecting terms of order
€?)
L ) . . K .
6x1=f;j6x]+f;k6u, i=1,...,n.
According to the constraints we have in every point
X i k -
gxit‘ix1 + g;kﬁu o+ 6z% = 0,

with 6z =2 0 for X = 1,...,v < m.

The conditions for £ = v + 1,..., 4 do not give restrictions on the chi
and éu¥, if they are sufficiently small,

The difference in value between the integral along the varied curve and
the extremal is

71
f {F()Zi + oxt, aF + suk, ) - F(&!, Gk, t)}dt =
’To N

71
= f {in ox' + F x 6uk} dt + 0(e?).

To

Now we have n+v relations between the variations 6uk, 6x' and 6z%. Ac-
cording to our assumption we can rearrange the ukX, so that

det(gl’l‘k)#o, K=1,...,v; k=1,...,v.
Introducing the inverse matrix 7}(

7,,1< gfk = 5,
we have

1 _ 1 & v+h 1 X i 1 &
bu’ = - v, goven 6U - 'yxgxiﬁxl - v, 62°%,
and the equations for 6%! take the form:
i _ i i 1 « i i i 1 & v+h i1 &
6X = (fgj - f;l'yx gei yox) + {fgwh - f;l Yy Egwh } éu - fﬁl 'yxéz .

i, j=1,...,n; 1,x=1,...,v; h=1,.,.,m-yp,
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while the integral transforms into
Tl :
(Fy -~ F v gX)6x + (F o - v g%m F )60 - F o ylazfl at
gl fjl xoz! ﬁ\H»h F's ﬁv+h ﬁl ﬁl 7{ .
TO

For further reduction of this integral we introduce a vector p, for which
d sxy = B.6 i S
dt(pi X)"pi X +p16X -

syl Po_gial o i i i 1 & y+h il
piéx1+pj(fii-fl;i'1'yx gii)6x1+pj{féy+h —fél'yxgﬁwh}éu * —pifél'y‘x sz”%.

In order to use this result for simplification of the integral the p; are
defined as a solution of the differential equation

- ' i 1 & 1«
Dy + (fgi - Tnvegs)p; = Fai - Favcgals

and the integral transforms into

: 'T] .

| T . . .

1 _« el i1« : vt+h

[piéXI}T § f [{Ff_?wh " Yegun g - By (T = Ty, gﬁ“h)}‘su oo
° 7T

A

+ pif.;lyj(dz"‘ - Fg 'Y:(&z'*] dt.

The multipliers A, are introduced as
- 1 i1
)‘K T T o4 'YK + pif:il’)’x

and the reduced form of the integral is

T
N B 1 v+h
[piéxl] + j {(Fﬁwh - b f;wh + kx gl?wh )ou + )t‘xézx}dt,
T,

T
0 o

Since now we have only considered uniformly small variations suk, it is
sufficient to consider variations duf for which 6x(7,) = 6x’(11) = 0. In this
case we have the condition that

Tl .
y . )
J A{F e -yt hn + Mg 0wt 4282 Lot 2 0
TO

for arbitrary éu”*" and 6z* z 0.
Using the fundamental lemma of the calculus of variations this leads to

Fovsn = pjféwh +tAg ;ifwh =0

together with
Ag 2 00

From the definition of A4, we also see thgt
-Fp +pfhi+negq=0

and we obtain for the determination of the extremals the following equations
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ci_ i j K

x = fy(x’,u,t), i=1,...,n,
p; = ‘fjipj t F ot A g;i:

0 = -Fg + pfh + Mogm, k= 1,...,m,
gh(x',uk, 1) = 0, k=1,...,v
A, 2 0.

9. The Weierstrass-Evdmann conditions and the equation of Hamillon-Jacobi.

With the restricted variations 6x'(7,) = éx'(7;) = 0 we derived the dif-
ferential equations which are satisfied along the extremal. We repeat that
we establish a set of necessary conditions for the existence of a f1e1d of
extremals, where X'(t), uk(t) gives a single extremal, extending from X (T,)
to X3i(Ty).

We now consider the general variations 6x! (t) and moreover we extend
the interval 7 St =71 to7y + 61 S t=T1 + b671.

Then along the arc of the variation curve the variation of the 1ntegral is

Tl-l' 6’7'1 'Tl
F(x!, u¥, ydt - f P&, 65, tydt =
Ty +4T, To
To T1*6Ty
= J F(xb, uk, t)dt + )’ F(<t, uk, t)dt +
To 6T, T1

71 ‘ . . *
+ f {F()El + &xt, GF + suk, t) - F(&L,ak, t)}dt =
= —F(xi, Uy, T, )67, + F(x:il,ul{,'rl)é'rl + pi('rl)ﬁxil -
71
- p, (7, )6xt + J. ka‘ézxdt + 0(€?),
T

o]

where use is made of the reduction of section 6,
The total displacements of the end points are

Axy = 6x; + fjér,,

i _ i
Ax, = 6%,

+ fi67,
and the variation of the integral is

_— . . _— _ .
{F(xi,ul,'rl) - pifll}é'rl + p;(Ty )Ax] - {F(x;,uo,'ro) - pif;)}A'ro - pi(T,)Ax, =
T1 v
= -H,.AT| + pj(1)Ax} + H, . AT - p(1,)Ax] + f A, 8z*dt.

To

We now remark that this eXpression is only the contribution of the arc
between T, + &7, and 71 + 611 of the varied curve. Moreover, the varia-

tions 6’7'0 s orp are arbitrary (although small) and also the variations 6x}
and 6x, can be chosen arbitrarily.
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In fact, the variations 6x' satisfy a set of linear equations where the su”
are functions, only subjected to the restrictions

giiéxj + gﬁkauk + 62 = 0, K=1,...,y = n
5z% = 0.

Starting with 6x'(7, ) it is always possible to find a set of functions suf so
that end values 8x'(7y) are reached by superposition of a set of n special
functions su® which satisfy the restriction.

Now for two intervals, adjacent, so that

T] = Te, T; * 8T] = To + 6Ty,
o= xP x4 oexy = x] +éxg
the contribution of the common endpoint to the variation of the integral is
- + - + i
(- Hy + HoAT + (p;, - Py JAX.
Since A7 and Ax' are arbitrary, we must have

+ . o1r- + _ -
Hy = Hy, Py = Py s

a

i.e, the p; and H must be continuous at the junction of the intervals. At
the final end point T; we have

AJ = - H(T1)AT; + p;(Ty)AX ,
which shows that not only, as was used in the definition of p;
JXi = pi(Tl):
but also
Jp = - H(T.).
Since the p; are defined by differential equations and they are continuous
at the junction of intervals, this gives the only boundary condition.
It is possible to introduce along the extremal the variables x' and p; as

canonical variables. In this case uX and A4 are considered as functions of
x' and p;, defined by the m +7v equations

j X
0= -Fyu +pfl+ ek, k=1...,m
g“(xi,uk,t) = 0, Xx=1,,..,v,
We introduce the Hamiltonian in the form
- _ i £
H=-F + pif +A,gn.

Along the part 7, <t £ 7; g% = 0, at a switching point where for a vyalue

of x Ay =0 we ke—ép this value for A, and go to another constraint g€ =0
which starts with A, = 0,
Hence we may write

( ) < > puk BX 4
H i = H i + H k . + H)\ >
X X u X ;

p; =const. pi,)\"‘,uk':const. ox’ ox!

1
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< > < > - -
H = H, +H —+H .
Pi Xy u X
'/ xi=const. ¥, , uk=const. , op; % ap;

s gy

_ j & _
But Huk = —Fuk + pifik + kxguk =0
as well as
Y S
H>‘K - g - 0:

and the equations take the canonical form
¥t = H
I':)i = - Hi .

Since H can be considered as a function of x' and p; only the value of the
integral satisfies the partial differential equation

Jp o+ HX,JI ;,T) = 0,

xi?
where, however, the dependence of H on Jyi is implicit,

In explicit form we obtain a set of partial differential equations

Jp - FxXLub, T) + £4(XLub, T). 0, = 0
g¥xi,uk, T) = 0 K=1,...,v,
-Fx * flilkJXi + kkgjk =0 k=1,,..,m.

These partial differential equations are the equations of Hamilton-Jacobi,
or the eiconal equations.

This differential equation is only linear in appearance. Putting Jyui = p;
we have

Jp - F(XLu®T) + f'p, = 0

T

where the uX depend on x! and p; from
g (x',u,T) = 0
-Fu +E,p, + Mgl = 0.

The equations of Charpit-Lagrange, which give the characteristics for the
eiconal equation :

dt _ dx! dp;

1 fl4(-F, +f! au’ CF o+ Elp 4 (<F g 4 thp ) 2
(-F k ukpi)api i ip; + (-Fx ukP;) BT

X X

using the last equation

i = dX1 = dpl

i ouk i auk
1 £ - .xg:k dp; -Fi f fiipjb‘ Mg;‘k ax?

From



180 R.Timman

we find
k
X ou
ks, =0
u api
and
& 4+ ogx U
gXI guk BXi 0

which shows that the characteristic equations can be written as

at  dx' dp;

1 £ -F; + fiipj + 8%

i.e. here again the canonical equations are the characteristics of the eiconal
equation.

At a switching point, where A, = 0, the last equation shows that the
derivatives J,i are continuous, as they are expected to be.

10. Constraints in the state variables only,

If the constraints contain the state variables only, the matrix g‘zk is

completely degenerate and the preceding conditions are no longer valid.
The constraints are supposed to have the form

g*(x', 1) £ 0, K = 1,..., 4,
which, after introduction of the slack variables z* passes into
g (xh 1) + 2% = 0,

where

We suppose that in the interval 7, £ t £ 7y,
z* = 0, K =1,...,V,
and
z% > 0, K=v+1,...,1.
Then the variations éx' at each point are limited by

g;’:iéxi+6z'x=0 XK=1,...,v,

where 6zf = 0, This leads to v multipliers A4, 2 0 so that we have to
determine the u¥ in such a way that the integral

T
J( [P, uf 1) - A g (1) bat
TO
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attains a minimum value.

After the introduction of the appropriate Ax the variations 6x! are no
longer restrlcted This means that we can now study the effect of a varia-
tion 6u¥ on the integral, The corresponding variation sx! follows from the
differential equations

sxl = flsxd + £l suk
xJ u
and the variation in the integral is
G
i k _ & o i
f{in 6x! - F jouk - ) g¥ex }dt
TO

where 2, 2 0 for « =1,...,v.
Introduce as before conjugate variables p,, we have

d - . R O C
I (p;6x') = p;6x + pi(Sx1 = p,6x' + pJ.f)iiéSx1 + pjfljlkéu .
Hence, putting
. : &
Py = -tk + F - Mgy
the variation of the integral takes the form

- i k _ il
j (p; 6x (Fuk pjfuk)éu }dt = [piéx}

T

T 1
. _ _] k
+ f (F i - p i) )eutdt.

7'0 7-0

This leads, since the su* are free, to the condition
- i =
Fuk pjfuk 0.
We obtain the system of equations for the determination of p,, x' and u®
b= fixd uk, ),
I:')- = —p]f;l(l + Fx )L gxl’
= -p fl +
0 pjfuk Fuk ,
where A, 2 0.

If for a value of 7, for certain values @ of x, A, goes through zero, the
condition g® = 0 ceases to apply and the value of A, remains zero.

In order to derive the Weierstrass-Erdmann conditions, we consider the
variation along an interval, extending from 7, + 67, to 7, + 67 and re-
marking that

(Axl), = (6x), + flar, (axl), = (6xY), + flér,,
the variation takes the form

T .
- (FoT), + (Fo1), + f (Fidx + F sufyat =

To

- (F + pfl) 67 + (-F + pf) ér, + (pAx'); - (pAxX),.
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Now for the total variation Axi, At we must have
g:iAXi + gfAt + Az* = 0
with Az* = 0, or
- g5 6% - (gf + £lgf)st = 2% - (gf + figh)et 2 0,

Now we already have 6z*¥ > 0, in order that Az* z 0 for positive and
negative values of 6t we must have

X .
ag” . gt + ghit' = 0,

i.e, at the endpoints the trajectory must be tangent to the surfaces ex-
pressing the boundary conditions. : _

At the junction of the two intervals, the p; and H = - F + p;f' + a, g*
are continuous, Here we have derived conditions for the minimum problem
for the integral

'7'1 7. T-

1 1
J - f (F - A g¥)dt = J' Fdt - j 2, g*at.

TO TO To

Introducing a factor u, by
.L.t‘K = A'J(

&£
and remarking that along the extremal %f— = 0, we can also write

Ty T Ty . 7'1
J = f Fdt - f g*du, = f Fdt - [u*g] .
TO TO TO TO

The Hamilton-Jacobi equations refer to this function, Hence

pi=J-, J, = ~H.

xl

If, instead of J we want to consider the original integral

T3
e = f Fdt = J + [u,xg"‘] - [u,xg“] ;
Ts 71 To

we derive the modification of the Hamilton-Jacobi equations by the consi-
deration of a variation, which extends from 7, + 67, to 7 + 67y, and
where the variation starts at

Axi) = 6x;1) + (fié'r)o, Axi = 6xil + (fié'r)l.
. . 1 . 1
Then AJ = [inAxl + I, 6T]O = [piAxl g 6t]o =
sk i % 1 i 1
= [inAxl + J7 Bt]o - [uk(g:iAxl + g‘fAt)]o .

From this result we see that

=
1l

X
i + ,ngxi-
-H +,u‘xg:(.

p.

o
i
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At a junction, where the trajectory leaves the boundary condition g 0
the u, jumps to zero and we have a jump in the values of J L and J Wh1ch
is proportional to gy and gy with the factor u,.

11. The problem of Mayer.

In many applications the obJect function is not an integral, but only a
function of the end values X!, T; of the variables x!,t: ®(Xi,T;). In this
case obviously the endpoint cannot be fixed, Hence we can only consider
the problem, where we have a set of end conditions

pP(X1,Ty) = O, p=1,...,1 <n,

which leave a certain amount of freedom.
The differential equations again have the form

xb = £y, uk ), 1), i=1,...,1,
with constraints
g¥xl,uk, 1) < 0, XK= 1,...,u,

As before the g*¥ are assumed to be independent.

The fundamental problem here again is to establish a set of necessary
conditions for the existence of a field of extremals, starting from a fixed
point X,,T, to each point of a neighbourhood of points which satisfy the
end conditions. Suppose we have an extremal U(t), X(t) which satisfies

. L
= 4R, 05,1

with
K&, 5, 1) + 25 = 0, K= 1,...,u,
z“=0, K =1,...,v,
e*{2(1,),T,}= 0, p=1,...,1

and  Q{(T,), T, } minimum,
We consider a neighbouring curve with u + sukf as control variables ex-
tending from T =T, to T = T; where éuX is uniformly small.
Then

6xt = xiuk,t) - LAk, T, <t <™
is the solution of the equation

oxt = floxd + £l 6uk

xJ u

with initial condition §x'(T,) = 0.

Ax' = sxN(Ty) + £4X1, ), Ty )6 T.

In order to find an expression for éxi(Tl) in terms of suX we again introduce
the variables p; as solutions of the equation

By = - ifip + A eq.
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Then

q ) L . ) . . , . )
It (p;6x') = pi6X1 + pydx’ = pif;jéxJ + pif;kéu - f;ipjéxl + )\Kg;iéxl.

i .k k
g;i 6x' + gzk sut + 8z° = 0,

which yields
d iy i k k k
& (piéxl) = pifilkéu - )L(kgﬁkéu - A8z

or
T Tq

17T ! ‘
[piéxl] =f (piflllk—Axgjk)éukdt— f K,xc‘iz“dt.

T
[} Ty T,

The end conditions pp(Xil,Tl) = 0 are taken into account by the introduction
of Lagrange multipliers #o, we seek the minimum of
@ - uppp:
i.e, the condition gives:
[@Xi - .UPSO:i]CSXI = 0.
Choosing now the end conditions for p; equal to

P

p, = @i-”p(pxi

1 X

we have

Tl Tl
i X k &
v J' {pif;k - Kﬁguk}éu dt - J. A 6z7dt 2 0,
TO (o)
Since the su” are arbitrary, we have
P £ .
pika )\.Kguk 0

and
Ay £ 0.

This gives the following set of necessary conditions:

= (&, uk, 1) i=1,...,n
p; = 'f;ipj + KAg;i

pifikT)t‘Kgl'fk=0 k =1,...,m
gf(xi,uk,t) = 0 K=1,...,v,

where for t = T, the end conditions for p; are determined from

)
p;i(T,) = @Xi - Hy ¥yl p=1,...,1
P (XL, Ty) = 0



Optimization Theory For Ordinary Differential Equations - 185

12. Time optimal problems, which ave linear in the state and comntvol
variables.

If the x' have to satisfy a set of linear differential equations

j k

Vi i i i .
x' =a}x + cput + d, i=1,,..,n, k=1,,,.,m,

k

where the u® are restricted by the conditions

gfuk + n* <0, K= 1,00,

and it is required to find those values of uk,, for which a curve, starting
at a point X§ for t = 0 reaches the origin Xi = 0 for a minimum value of
T, , the conditions of the preceding section require the solution of the set
of adjoint equations

- - N ]
where the u; have to be chosen such as to maximize
= - iy ik i
H 1+ p;a;x + pe ut pid
with the constraints
gfuf + n¥ < o, K=1,...,H

This means that at each time the values of u® are determined by a linear
programming problem., ‘
For a maximum the A, which are determined from the conditions

picli(+?td<gf(‘=0 k=1,,..,m

have to satisfy A, £ 0.

Apparently the Ax are the dual variables of the linear programming
problem and the well-known results apply that always exactly m equality
conditions on the uX are satisfied. For changing values of p; the cost func-
tion changes. Hence in this case we have a case of parametric linear
programming,

It is necessary here that the number of conditions u is greater than m,
the number of parameters uk._

If the endpoint is the point X] = 0, it is necessary that this endpoint is
always reached along a curve, where the uk are completely determined by
a set of m equality conditions. Hence, we have a set of fixed trajectories
through the origin, along which the origin can be reached, each corre-
sponding to a vertex of the Simplex formed by the hyperplanes.

Apparently, only in the linear case these simple conditions apply.
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